If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z find the value of Jacobian J del(u,v,w)/ del(x,y,z)

If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z find the value of Jacobian J del(u,v,w)/ del(x,y,z) Question Question If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z find the value of Jacobian J del(u,v,w)/ del(x,y,z) Jacobian matrix problems If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z find the value of…

If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3)

If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) Question Question If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) Jacobian matrix problems If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) If u=x^2+y^2+z^2,…

If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0)

If u=x+3y^2,  v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) Question Question If u=x+3y^2,  v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) Jacobian matrix problems If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z…

If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4

If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 Question Question If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 Jacobian matrix problems If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian J del (u,v,w)/del(x_1,x_2,x_3) If u=x^2+y^2+z^2, v=xy+yz+zx, w=x+y+z…

Jacobian matrix of partial derivatives

Jacobian matrix of partial derivatives Let 'u' and 'v' be functions of two independant variables 'x' and 'y'. The jacobian(J) of 'u' and 'v' with respect to 'x' and 'y' is symbolically represented and defined as follows Jacobian matrix problems If u=yz/x, r=zx/y, w=xy/z, Show that J [(u, v, w)/ (x, y, z)] =4 If u=x+3y^2, v=4x^2 yz, w=2z^2-xy, Evaluate del (u,v,w)/del (x,y,z) at the point (1,-1, 0) If u=(x_2 x_3)/x_1, v=(x_1 x_3)/x_2, w=(x_1 x_2)/x_3 find the value of Jacobian…

Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1)

Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1) Question Question Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1) Maxima and Minima Problems Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1)

Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values

Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values Question Question Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values Maxima and Minima Problems Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1)

Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x

Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x Question Question Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x Maxima and Minima Problems Find the maximum and minimum values of the function x^3+3xy^2-15x^2-15y^2+72x Examine the function f (x,y) =x^4+y^4-2 (x-y) ^2 for extreme values Show that Z (x, y) =x^3+y^3-3xy+1 minimum at (1,1)

Maxima and Minima for a function of two variables

Maxima and Minima for a function of two variables 1. A function f(x) is said to have a maximum value at a point x=a if there exists a neibourhood of the point 'a' say (a+h), h is small, such that f(a)>f(a+h). 2. Similarly if f(a)<f(a+h) then f(x)is said to have minimum value at x=a. 3. A necessary condition for f(a) to be an extreme value of f(x) is that f'(a)=0 f(a)is maximum if f'(a)=0 and f''(a)<0 f(a)is minimum if f'(a)=0…

Find the dimensions of the rectangular box open at the top of maximum capacity whose surface is 432 sq.cm

Find the dimensions of the rectangular box open at the top of maximum capacity whose surface is 432 sq.cm Question Find the dimensions of the rectangular box open at the top of maximum capacity whose surface is 432 sq.cm Solution Question Find the dimensions of the rectangular box open at the top of maximum capacity whose surface is 432 sq.cm LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy…

Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid x^2/a^2 +y^2/b^2 +z^2/c^2 =1

Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid x^2/a^2 +y^2/b^2 +z^2/c^2 =1 Question Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid Solution Question Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid x^2/a^2 +y^2/b^2 +z^2/c^2 =1 LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and…

Show that the rectangular box of maximum value and a given surface area is a cube

Show that the rectangular box of maximum value and a given surface area is a cube. Question Show that the rectangular box of maximum value and a given surface area is a cube. Solution Question Show that the rectangular box of maximum value and a given surface area is a cube. LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function…

A rectangular box open at the top is to have a volume of 32 cubic feet. Find its dimensions if the total surface area is minimum

A rectangular box open at the top is to have a volume of 32 cubic feet. Find its dimensions if the total surface area is minimum Question Question A rectangular box open at the top is to have a volume of 32 cubic feet. Find its dimensions if the total surface area is minimum LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values…

If x, y, z are the angles of a triangle, find the maximum value of sin x sin y sin z

If x, y, z are the angles of a triangle, find the maximum value of sin x sin y sin z Question Question If x, y, z are the angles of a triangle, find the maximum value of sin x sin y sin z LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function f (x, y) =3x+4y on the circle…

Find the maximum and minimum values of x^2+y^2 subject to the condition 2x^2+3xy+2y^2=1

Find the maximum and minimum values of x^2+y^2 subject to the condition 2x^2+3xy+2y^2=1 Question Question Find the maximum and minimum values of x^2+y^2 subject to the condition 2x^2+3xy+2y^2=1 LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers Find the maximum and minimum values of x^2+y^2 subject to…

Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers

Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers Question Question Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function f (x, y) =3x+4y on…

Discuss maximum or minimum for x^3+y^3-3xy

Discuss maximum or minimum for x^3+y^3-3xy Question Question Discuss maximum or minimum for x^3+y^3-3xy LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers Find the maximum and minimum values of x^2+y^2 subject to the condition 2x^2+3xy+2y^2=1 If x, y, z are the angles of a triangle, find…

Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2

Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Question Question Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 LaGrange's Method Problems Find the minimum value of x^2+y^2+z^2 subject to the condition xy+yz+zx=3a^2 Discuss maximum or minimum for x^3+y^3-3xy Find the maxima and minima values of the function f (x, y) =3x+4y on the circle x^2+y^2=1 using method of Lagrange’s multipliers Find the maximum and minimum values of x^2+y^2 subject to the condition 2x^2+3xy+2y^2=1 If…

LaGrange’s method of multipliers with one subsidiary condition

LaGrange's method of multipliers with one subsidiary condition Procedure Step 1: Auxilliary function is formed by Step 2: Form equations Fx=0 ,Fy=0 and Fz=0 where Fx is the partial derivative of ‘F’ with respect to ‘x’ Fy is the partial derivative of ‘F’ with respect to ‘y’ and Fz is the partial derivative of ‘F’ with respect to ‘z’. Step 3: Solve for (x,y,z) and 'λ',the values of u(x,y,z)are the Stationary values. LaGrange's Method Problems Find the minimum value of…

If z(x+y) =x^2+y^2, Show that (del z/del x – del z/del y) ^2= 4(1- (del z/del x)-(del z/ del y))

If z(x+y) =x^2+y^2, Show that (del z/del x – del z/del y) ^2= 4(1- (del z/del x)-(del z/ del y)) Question Question If z(x+y) =x^2+y^2, Show that (del z/del x – del z/del y) ^2= 4(1- (del z/del x)-(del z/ del y)) Total Derivatives Problems Find du/dt when u=x^3 y^2+x^2 y^3 with x=at^2, y=2at. Use partial derivatives. Find du/dt if u=xy+yz+zx and x=t cost , y=tsint , z=t @ t=π/4 If u=f(x/y, y/z, z/x) prove that p=x/y, q=y/z, r=z/x If…