if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z
if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z Question Solution Question if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0…