if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z

if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z Question Solution Question if x^x y^y z^z=c show thatn (∂^2 z)/∂x∂y=-(1+logx)(1+logy)/(z(1+logz)^3) and hence deduce that (∂^2 z)/∂x∂y=-(xlog(ex))^-1 when x=y=z   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0…

if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1

if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1 Question Solution Question if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 2 Questions if…

if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0

if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 Question Solution Question if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 2 Questions if…

if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu

if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu Question Solution Question if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 2 Questions if x^x y^y z^z=c show…

if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y)

if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) Question Solution Question if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y)   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1  …

if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1

if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 Problem Solution Problem if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 2 Questions if x^x y^y z^z=c show thatn (∂^2…

if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0

if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 Problem Solution Problem if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0   Type 1 Questions if u=x^3-3xy^2+x+(e^x cosy)+1, show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))=0 if u= log((x^2+y^2)/(x+y)), show that xu_x+yu_y=1 if u=tan^(-1)(y/x), verify that (∂^2 u)/(∂y ∂x) = (∂^2 u)/(∂x ∂y) if u=e^(ax+by)f(ax-by), prove that (b ∂u/∂x)+(a ∂u/∂y)=2abu if u=1/√(x^2+y^2+z^2), then show that ((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2))=0 if u=log√(x^2+y^2+z^2), then show that (x^2+y^2+z^2)(((∂^2 u)/(∂x^2))+((∂^2 u)/(∂y^2))+((∂^2 u)/(∂z^2)))=1   Type 2 Questions if x^x y^y…

Partial Derivatives

Partial derivatives deals with the differentiation of a function of many independent variables. Partial derivatives Examples: Area of rectangle depends on its length and breadth which is defined as A(l,b) Volume of parallelepiped depends on its length, breadth and height which is defined as V(l,b,h) Where equation (1) -> partial derivative of ‘u’ with respect to ‘x’, ‘y’ being a constant variable and (2) -> partial derivative of ‘u’ with respect to ‘y’, ‘x’ being a constant variable. Type 1:…

How to get an Enum Value from a String Value in Java

Java enums are a convenient way to define a set of named constants. However, sometimes we need to convert a string representation of an enum value to its corresponding enum instance. This can be useful in a variety of scenarios, such as parsing user input or reading data from a file. In this post, we will explore several different approaches to converting a string to an enum value in Java. Using the valueOf Method The simplest and most direct way…

What are the differences between a HashMap and a Hashtable in Java?

Java provides two main classes for implementing a hash table data structure - HashMap and Hashtable. Although they seem similar, there are several key differences between the two that make them appropriate for different use cases. Thread Safety The most significant difference between HashMap and Hashtable is that HashMap is not thread-safe while Hashtable is thread-safe. This means that if multiple threads try to access a HashMap at the same time, there is a possibility of data being corrupted. On…

Indeterminate Forms

In-determinate Forms If f(x) at x = a assumes forms like etc., which do not represent any value are called In-determinate forms. The concept of limit gives a meaningful value for the function  at overcomes these in-determinate forms. The differentiations for such forms are performed using L'Hospital’s (French Mathematician) rule. L’ Hospital’s theorem Statement If  f(x) and g(x) are two functions such that Problems are categorized under three different types. Type 1 Type 2 Type 3 Note Standard limits that…

Evaluate lim(x→0) [(sin^2(π/(2-x))]^sec^2(π/(2-x))

Evaluate lim(x→0) [(sin^2(π/(2-x))]^sec^2(π/(2-x)) Problem Solution Problem Evaluate lim(x→0) [(sin^2(π/(2-x))]^sec^2(π/(2-x)) Type 1 Problems Evaluate lim (x→0) (x e^x -log(1+x)) / x^2 Evaluate lim (x→π/2) log(sin x) / (π - 2x)^2 Evaluate lim (x→0) (sinh x - x) / ( sin x - x cos x) Evaluate lim (x→π/2) log(x-π/2) / tan x Evaluate lim (x→0) [a/x - cot x/a] Evaluate lim (x→0) [1/x - log(1+x)/x^2] Type 2 Problems Evaluate lim x -> 0 (tan x - x)/(x ^ 2 * tan…

Creating an ArrayList from an Array in Java

ArrayList is a popular data structure in Java that provides a dynamic and resizable array, unlike traditional arrays that have a fixed size. ArrayLists are widely used in programming and can be easily converted from an array. In this article, we'll look at the various ways of converting an array into an ArrayList in Java. 1. Using the Arrays.asList Method The Arrays.asList method is the simplest and most straightforward way of converting an array into an ArrayList in Java. The…

How to convert int to String in java

In Java, it is often necessary to convert values from one data type to another. One common conversion is converting an integer value to a String. This can be useful when needing to display a numerical value in a text format, or when concatenating multiple values into a single string. In this blog post, we will explore the different methods available to convert an int to a String in Java. 1. Using the valueOf() Method The valueOf() method is a…

Evaluate lim(x→0) ((a^x+b^x+c^x+d^x)/4)^(1/x)

Evaluate lim(x→0) ((a^x+b^x+c^x+d^x)/4)^(1/x) Problem Solution Problem Evaluate lim(x→0) ((a^x+b^x+c^x+d^x)/4)^(1/x) Type 1 Problems Evaluate lim (x→0) (x e^x -log(1+x)) / x^2 Evaluate lim (x→π/2) log(sin x) / (π - 2x)^2 Evaluate lim (x→0) (sinh x - x) / ( sin x - x cos x) Evaluate lim (x→π/2) log(x-π/2) / tan x Evaluate lim (x→0) [a/x - cot x/a] Evaluate lim (x→0) [1/x - log(1+x)/x^2] Type 2 Problems Evaluate lim x -> 0 (tan x - x)/(x ^ 2 * tan…

Java String to Date Conversion

In Java, the conversion of a string representation of a date to a java.util.Date object is a common task. In this article, we'll go over the different methods of converting a string to a date and provide code examples for each. 1. SimpleDateFormat The SimpleDateFormat class is a format class that is used to parse and format dates. It takes a string pattern that represents the format of the string representation of a date. To convert a string to a…

Evaluate lim(x→0) ((a^x+b^x+c^x)/3)^(1/x)

Evaluate lim(x→0) ((a^x+b^x+c^x)/3)^(1/x) Problem Solution Problem Evaluate lim(x→0) ((a^x+b^x+c^x)/3)^(1/x) Type 1 Problems Evaluate lim (x→0) (x e^x -log(1+x)) / x^2 Evaluate lim (x→π/2) log(sin x) / (π - 2x)^2 Evaluate lim (x→0) (sinh x - x) / ( sin x - x cos x) Evaluate lim (x→π/2) log(x-π/2) / tan x Evaluate lim (x→0) [a/x - cot x/a] Evaluate lim (x→0) [1/x - log(1+x)/x^2] Type 2 Problems Evaluate lim x -> 0 (tan x - x)/(x ^ 2 * tan…

Evaluate lim(x→0) ((a^x+b^x)/2)^(1/x)

Evaluate lim(x→0) ((a^x+b^x)/2)^(1/x) Problem Solution Problem Evaluate lim(x→0) ((a^x+b^x)/2)^(1/x) Type 1 Problems Evaluate lim (x→0) (x e^x -log(1+x)) / x^2 Evaluate lim (x→π/2) log(sin x) / (π - 2x)^2 Evaluate lim (x→0) (sinh x - x) / ( sin x - x cos x) Evaluate lim (x→π/2) log(x-π/2) / tan x Evaluate lim (x→0) [a/x - cot x/a] Evaluate lim (x→0) [1/x - log(1+x)/x^2] Type 2 Problems Evaluate lim x -> 0 (tan x - x)/(x ^ 2 * tan…

How to Create a New List in Java

Java is an object-oriented programming language that provides various data structures for efficient data storage and manipulation. One of the most commonly used data structures in Java is the List. A List is an ordered collection of elements and can contain duplicate values. There are several ways to create a new List in Java, each with its own advantages and disadvantages. In this post, we'll cover the most commonly used methods for creating lists. 1. Using the ArrayList Class The…

How to Get the Current Date and Time in Java

In this post, we will be discussing how to retrieve the current date and time in Java. There are several ways to accomplish this, and we will explore some of the most common methods. 1. Using the Date and Calendar Classes The Java Date class is a data structure that represents a specific moment in time. It includes information such as the year, month, day, hour, minute, second, and time zone. The Calendar class, on the other hand, is an…