If z=f(x, y) where x=r cos(theta) and y=r sin(theta), Show that (del z/del x)^2 + (del z/del y) ^2 = (del z/del r)^2+1/r^2 . (del z/del (theta))^2
Question
Question
If z=f(x, y) where x=r cos(theta) and y=r sin(theta), Show that (del z/del x)^2 + (del z/del y) ^2 = (del z/del r)^2+1/r^2 . (del z/del (theta))^2
Total Derivatives Problems
- Find du/dt when u=x^3 y^2+x^2 y^3 with x=at^2, y=2at. Use partial derivatives.
- Find du/dt if u=xy+yz+zx and x=t cost , y=tsint , z=t @ t=π/4
- If u=f(x/y, y/z, z/x) prove that p=x/y, q=y/z, r=z/x
- If u=f(x-y, y-z, z-x), Show that del u/del x+del u/del y+del u/del z=0
- If z=f(x, y) where x=r cos(theta) and y=r sin(theta), Show that (del z/del x)^2 + (del z/del y) ^2 = (del z/del r)^2+1/r^2 . (del z/del (theta))^2
- If z = sin (ax+y) + cos (ax-y), Prove that (del)^2 z / del x^2 = a^2 (del)^2 z / del y^2
- If z(x+y) =x^2+y^2, Show that (del z/del x – del z/del y) ^2= 4(1- (del z/del x)-(del z/ del y))